Codon VS Perl benchmarks

Current benchmark data was generated on Mon Dec 30 2024, full log can be found HERE

CONTRIBUTIONS are WELCOME!

[x86_64][4 cores] AMD EPYC 7763 64-Core Processor (Model 1)

* -m in a file name stands for multi-threading or multi-processing

* -i in a file name stands for direct intrinsics usage. (Usage of simd intrinsics via libraries is not counted)

* -ffi in a file name stands for non-stdlib FFI usage

* (You may find time < time(user) + time(sys) for some non-parallelized programs, the overhead is from GC or JIT compiler, which are allowed to take advantage of multi-cores as that's more close to real-world scenarios.)

helloworld

Input: QwQ

lang code time stddev peak-mem mem time(user) time(sys) compiler compiler/runtime
perl 1.pl 2.7ms 0.4ms 5.1MB 0ms 0ms perl 5.40.0
codon 1.py 4.4ms 0.4ms 7.4MB 0ms 0ms codon 0.17.0

nbody

Input: 5000000

lang code time stddev peak-mem mem time(user) time(sys) compiler compiler/runtime
codon 1.py 1295ms 2.7ms 7.7MB 1280ms 0ms codon 0.17.0
perl 2.pl timeout 0.0ms 6.1MB 4990ms 0ms perl 5.40.0

Input: 500000

lang code time stddev peak-mem mem time(user) time(sys) compiler compiler/runtime
codon 1.py 141ms 10ms 8.0MB 133ms 0ms codon 0.17.0
perl 2.pl 2734ms 15ms 6.1MB 2720ms 0ms perl 5.40.0

nsieve

Input: 12

lang code time stddev peak-mem mem time(user) time(sys) compiler compiler/runtime
codon 1.py 373ms 9.4ms 46.4MB 357ms 3ms codon 0.17.0
codon 2.py 846ms 3.3ms 99.7MB 820ms 20ms codon 0.17.0

Input: 10

lang code time stddev peak-mem mem time(user) time(sys) compiler compiler/runtime
codon 1.py 78ms 1.7ms 17.3MB 67ms 0ms codon 0.17.0
codon 2.py 200ms 1.6ms 26.0MB 190ms 3ms codon 0.17.0