Codon VS Lua benchmarks

Current benchmark data was generated on Sat Nov 16 2024, full log can be found HERE

CONTRIBUTIONS are WELCOME!

[x86_64][4 cores] AMD EPYC 7763 64-Core Processor (Model 1)

* -m in a file name stands for multi-threading or multi-processing

* -i in a file name stands for direct intrinsics usage. (Usage of simd intrinsics via libraries is not counted)

* -ffi in a file name stands for non-stdlib FFI usage

* (You may find time < time(user) + time(sys) for some non-parallelized programs, the overhead is from GC or JIT compiler, which are allowed to take advantage of multi-cores as that's more close to real-world scenarios.)

helloworld

Input: QwQ

lang code time stddev peak-mem mem time(user) time(sys) compiler compiler/runtime
lua 1.lua 1.4ms 0.1ms 2.4MB 0ms 0ms luajit 2.1.0-beta3
lua 1.lua 1.5ms 0.2ms 2.1MB 0ms 0ms lua 5.4.7
codon 1.py 4.6ms 0.6ms 7.4MB 0ms 0ms codon 0.17.0

nbody

Input: 5000000

lang code time stddev peak-mem mem time(user) time(sys) compiler compiler/runtime
lua 4.lua 716ms 7.4ms 2.4MB 707ms 0ms luajit 2.1.0-beta3
codon 1.py 1302ms 15ms 7.9MB 1287ms 0ms codon 0.17.0
lua 4.lua timeout 0.0ms 2.3MB 4990ms 0ms lua 5.4.7

Input: 500000

lang code time stddev peak-mem mem time(user) time(sys) compiler compiler/runtime
lua 4.lua 76ms 2.2ms 2.4MB 67ms 0ms luajit 2.1.0-beta3
codon 1.py 136ms 1.4ms 7.9MB 130ms 0ms codon 0.17.0
lua 4.lua 1120ms 22ms 2.3MB 1107ms 0ms lua 5.4.7

nsieve

Input: 12

lang code time stddev peak-mem mem time(user) time(sys) compiler compiler/runtime
codon 1.py 374ms 2.0ms 46.6MB 357ms 0ms codon 0.17.0
codon 2.py 856ms 4.9ms 99.8MB 833ms 20ms codon 0.17.0

Input: 10

lang code time stddev peak-mem mem time(user) time(sys) compiler compiler/runtime
codon 1.py 73ms 2.7ms 17.3MB 60ms 0ms codon 0.17.0
codon 2.py 197ms 1.6ms 25.6MB 187ms 3ms codon 0.17.0