Codon VS Kotlin benchmarks

Current benchmark data was generated on Tue Mar 25 2025, full log can be found HERE

CONTRIBUTIONS are WELCOME!

[x86_64][4 cores] AMD EPYC 7763 64-Core Processor (Model 1)

* -m in a file name stands for multi-threading or multi-processing

* -i in a file name stands for direct intrinsics usage. (Usage of simd intrinsics via libraries is not counted)

* -ffi in a file name stands for non-stdlib FFI usage

* (You may find time < time(user) + time(sys) for some non-parallelized programs, the overhead is from GC or JIT compiler, which are allowed to take advantage of multi-cores as that's more close to real-world scenarios.)

helloworld

Input: QwQ

lang code time stddev peak-mem mem time(user) time(sys) compiler compiler/runtime
kotlin 1.kt 2.2ms 0.4ms 2.6MB 0ms 0ms kotlin/native 1.8.21
codon 1-m.py 11ms 0.7ms 8.6MB 20ms 0ms codon 0.18.2
kotlin 1.kt 59ms 4.0ms 47.2MB 56ms 16ms kotlin/jvm 21

nbody

Input: 5000000

lang code time stddev peak-mem mem time(user) time(sys) compiler compiler/runtime
kotlin 1n.kt 404ms 1.3ms 2.5MB 393ms 0ms kotlin/native 1.8.21
kotlin 1.kt 453ms 4.2ms 49.4MB 497ms 20ms kotlin/jvm 21
codon 1.py 1322ms 1.2ms 8.8MB 1630ms 0ms codon 0.18.2

Input: 500000

lang code time stddev peak-mem mem time(user) time(sys) compiler compiler/runtime
kotlin 1n.kt 44ms 0.5ms 2.5MB 37ms 0ms kotlin/native 1.8.21
kotlin 1.kt 123ms 1.5ms 49.5MB 170ms 13ms kotlin/jvm 21
codon 1-m.py 176ms 3.4ms 9.0MB 487ms 0ms codon 0.18.2

nsieve

Input: 12

lang code time stddev peak-mem mem time(user) time(sys) compiler compiler/runtime
codon 1-m.py 461ms 8.3ms 47.7MB 763ms 0ms codon 0.18.2
codon 2.py 1572ms 19ms 100.8MB 1877ms 27ms codon 0.18.2

Input: 10

lang code time stddev peak-mem mem time(user) time(sys) compiler compiler/runtime
codon 1-m.py 125ms 0.2ms 18.6MB 430ms 0ms codon 0.18.2
codon 2-m.py 397ms 1.3ms 27.1MB 707ms 3ms codon 0.18.2