Codon VS Lua benchmarks

Current benchmark data was generated on Tue Jul 01 2025, full log can be found HERE

CONTRIBUTIONS are WELCOME!

[x86_64][4 cores] AMD EPYC 7763 64-Core Processor (Model 1)

* -m in a file name stands for multi-threading or multi-processing

* -i in a file name stands for direct intrinsics usage. (Usage of simd intrinsics via libraries is not counted)

* -ffi in a file name stands for non-stdlib FFI usage

* (You may find time < time(user) + time(sys) for some non-parallelized programs, the overhead is from GC or JIT compiler, which are allowed to take advantage of multi-cores as that's more close to real-world scenarios.)

helloworld

Input: QwQ

lang code time stddev peak-mem mem time(user) time(sys) compiler compiler/runtime
lua 1.lua 1.4ms 0.1ms 2.0MB 0ms 0ms lua 5.4.7
lua 1.lua 1.4ms 0.2ms 2.4MB 0ms 0ms luajit 2.1.0-beta3
codon 1-m.py 11ms 0.6ms 8.5MB 20ms 0ms codon 0.19.0

nbody

Input: 5000000

lang code time stddev peak-mem mem time(user) time(sys) compiler compiler/runtime
lua 4.lua 715ms 1.4ms 2.4MB 710ms 0ms luajit 2.1.0-beta3
codon 1.py 1325ms 2.3ms 9.4MB 1630ms 0ms codon 0.19.0
lua 4.lua timeout 0.0ms 2.3MB 4990ms 0ms lua 5.4.7

Input: 500000

lang code time stddev peak-mem mem time(user) time(sys) compiler compiler/runtime
lua 4.lua 81ms 9.6ms 2.3MB 73ms 0ms luajit 2.1.0-beta3
codon 1-m.py 173ms 4.4ms 9.4MB 483ms 0ms codon 0.19.0
lua 4.lua 1148ms 64ms 2.3MB 1137ms 0ms lua 5.4.7

nsieve

Input: 12

lang code time stddev peak-mem mem time(user) time(sys) compiler compiler/runtime
codon 1-m.py 409ms 6.0ms 48.6MB 697ms 3ms codon 0.19.0
codon 2.py 913ms 1.4ms 100.8MB 1220ms 23ms codon 0.19.0

Input: 10

lang code time stddev peak-mem mem time(user) time(sys) compiler compiler/runtime
codon 1-m.py 117ms 2.3ms 19.4MB 427ms 0ms codon 0.19.0
codon 2-m.py 233ms 3.4ms 27.7MB 543ms 7ms codon 0.19.0